

ON $\alpha\beta$ -SETS

BY
Y. KATZNELSON

ABSTRACT

A closed set $E \subset \mathbf{T}$ is an $\alpha\beta$ -set, where α and β are elements of infinite order in \mathbf{T} , if $E \subset (E - \alpha) \cup (E - \beta)$. We give two constructions of "thin" $\alpha\beta$ -sets.

Let α and β be elements of infinite order of the circle group $\mathbf{T} = \mathbf{R}/\mathbf{Z}$. A closed $E \subset \mathbf{T}$ is an $\alpha\beta$ -set if $E \subset (E - \alpha) \cup (E - \beta)$, or equivalently if, whenever $x \in E$, then either $x + \alpha \in E$ or $x + \beta \in E$ (or both). An $\alpha\beta$ -orbit is a sequence $\{x_n\}$ such that $x_{n+1} - x_n$ is either α or β . Engelking [1] raises the question of existence of non-dense $\alpha\beta$ -sets. The purpose of this note is to give a positive answer to that question.

§1

THEOREM 1. *Assume that α and β are rationally independent (mod 1) and that $\{y_n\}_{n=1}^{\infty} \subset \mathbf{T}$ is arbitrary. There exists a closed $\alpha\beta$ -set E disjoint from $\{y_n\}$.*

REMARKS. (1) If $\{Y_n\}$ is dense in \mathbf{T} , the set E given by the theorem is clearly non-dense.

(2) The assumption that α and β are rationally independent is essential. If α and β are dependent, there exists some $\gamma \in \mathbf{T}$ and integers n_1, n_2 such that $\alpha = n_1\gamma$, $\beta = n_2\gamma$, and any $\alpha\beta$ -orbit is a subset of bounded gaps of a γ -orbit. Since any γ -orbit is dense in \mathbf{T} we see that if E is any non-empty $\alpha\beta$ -set, $\bigcup_{j=0}^M E + j\gamma = \mathbf{T}$ where $M = \max_{i=1,2} |n_i|$ and E has non-empty interior.

For $\varepsilon > 0$ write $N(\varepsilon) = \inf(n + m)$ such that $n \geq 0$, $m \geq 0$, $n + m > 0$ and $|n\alpha + m\beta \pmod{1}| < \varepsilon$. $N(\varepsilon)$ is clearly bounded by $1/\varepsilon$ and depends on the Diophantine properties of the pair α, β . The assumptions we made on α, β imply $\lim_{\varepsilon \rightarrow 0} N(\varepsilon) = \infty$.

Received December 20, 1978

LEMMA 1. *Let E be an $\alpha\beta$ -set, $E \subset \bigcup_{j=1}^k I_j$ where I_j are intervals of lengths $|I_j|$. Then $\sum_{j=1}^k (N(|I_j|))^{-1} \geq 1$.*

PROOF. An $\alpha\beta$ -orbit can spend no more than $(N(|I_j|))^{-1}$ of its time in I_j .

COROLLARY. *If $N(\varepsilon) > c\varepsilon^{-\eta}$ ($0 < \eta < 1$), then the Hausdorff dimension of every $\alpha\beta$ -set is at least η .*

We shall use the following variant of Lemma 1:

LEMMA 2. *Assume that $\{I_i\}_{i=1}^k$ are open intervals on \mathbf{T} such that $\sum_{i=1}^k N(|I_i|)^{-1} < 1/10$. There exists an integer K such that if $\{x_i\}_{i=0}^M$ is an $\alpha\beta$ -orbit and $x_i \in \bigcup I_i$ for $\frac{1}{2}M$ values of i , then $M < K$.*

PROOF. Long orbits can spend no more than $1/10$ of their time in $\bigcup I_i$.

PROOF OF THEOREM 1. We construct E by removing from \mathbf{T} , successively, finite unions of open intervals and taking the intersection of whatever is left. The first stage consists of removing from \mathbf{T} an open interval I_1 , containing y_1 , such that $N(|I_1|)^{-1} < 1/10$, where $|I_1|$ is also small enough to insure that $E_1 = \mathbf{T} \setminus I_1$ is an $\alpha\beta$ -set. We also require that no end point of I_1 (as well as those of any interval which we remove later) belongs to the same $\alpha\beta$ -orbit as any of the points $\{y_i\}$.

After n steps we obtain a set $E_n = \mathbf{T} \setminus \bigcup_{j=1}^n I_j$ which is an $\alpha\beta$ -set and such that

$$(1) \quad \sum_{j=1}^n N(|I_j|)^{-1} < 1/10$$

and $\{y_j\}_{j=1}^n \subset I_j$. Let y' be the first y_j not covered by $\bigcup I_j$. It is clear that if we remove y' from E_n and we are to obtain an $\alpha\beta$ -set, we have to remove at the same time all the points $x \in E_n$ such that any $\alpha\beta$ -orbit starting at x and remaining in E_n must pass through y' . Such points x clearly have the form $y' = k\alpha - l\beta$, $k \geq 0$, $l \geq 0$, $k + l > 0$, and we claim that there are only a finite number of those, in fact, that $k + l < K$ where K is the integer given by Lemma 2 for $\{I_j\}_{j=1}^n$. Let $x = y' - k\alpha - l\beta$ be such a point and assume that $l \geq k$; any $\alpha\beta$ -orbit from x which remains in E_n must have k α -steps and l β -steps in its first $k + l$ steps. Here we use the independence of α and β and the fact that such an orbit must pass through y' . Of the usually several such orbits from x to y' there is one that favors α in the sense that whenever there is an option to step α or β , α is done. Denote this orbit by $\{\xi_j\}_{j=0}^{k+1}$ ($\xi_0 = x$, $\xi_{k+1} = y'$); there are l values of j for which the β -step was forced, i.e., $\xi_j + \alpha \notin E_n$. If we look at the orbit $\{\xi_j + \alpha\}_{j=0}^{k+l}$ we see that l of its $k + l$ members are in $\bigcup_{j=1}^n I_j$ and since $l \geq \frac{1}{2}(k + l)$

we can apply Lemma 2 and obtain $k + l \leq K$. If $l < k$ interchange the roles of α and β and again $k + l \leq K$. Notice that the bound K depends only on the structure of E_n and not on the point y' . If we denote by $R(y')$ the set of points which have to be removed with y' , we see that this set is contained in the interior of E_n (by the assumption made on the boundary points) and clearly depends continuously on y' in the sense that for all sufficiently small δ we have $r(y' + \delta) = R(y') + \delta$. Thus, if we remove a δ neighborhood of $R(y')$, that is the union of intervals of length 2δ centered at each $x \in R(y')$, the remaining set E_{n+1} will again be an $\alpha\beta$ -set. We impose on δ also to be small enough so that (1) be valid for $n + 1$, and finally that the new boundary points not share $\alpha\beta$ -orbits with any y_j .

§2. The construction described above clearly gives sets of positive measure. It seems probable that for any independent pair α, β there exist $\alpha\beta$ -sets of measure zero. On the other hand, the corollary to Lemma 1 shows that in general $\alpha\beta$ -sets have positive Hausdorff dimension. Our next construction shows that for some pairs α, β there exist extremely thin $\alpha\beta$ -sets.

THEOREM 2. *Given any Hausdorff function h , there exist pairs α, β and $\alpha\beta$ -sets E such that Hausdorff h -measure of E is zero.*

PROOF. We construct α, β and E simultaneously by successive approximation of α and β by rationals and E by finite sets. The thinner we want E the more "Liouville" will α and β have to be. We start by putting $\alpha_1 = 0.1, \beta_1 = 0.3$ and $E = \{0, \alpha_1, 2\alpha_1, 3\alpha_1, 4\alpha_1 = \alpha_1 + \beta_1, 7\alpha_1 = \alpha_1 + 2\beta_1\}$. We have two closed orbits in E_1 starting at zero, namely,

a_1 : four α_1 -steps followed by two β_1 -steps,

b_1 : one α_1 -step followed by three β_1 -steps.

We use the notation a_1, b_1 (and similarly a_n, b_n etc. later) as lists of steps to take. Thus, for any α^*, β^* , $a_1(\alpha^*, \beta^*)$ will mean: "take four α^* -steps and then two β^* -steps".

Let N_2 and M_2 be (large) positive integers. For every ε_2, η_2 we can solve the equations $4x + 2y = 1 + \varepsilon_2, x + 3y = 1 + \eta_2$. If ε_2 and η_2 are both small, the solution (α_2, β_2) will be close to (α_1, β_1) . We take $\varepsilon_2 > 0, \eta_2 > 0$ such that $\eta_2 = N_2 \varepsilon_2$, η_2 is roughly $(M_2 + 1)^{-1} \alpha_1$ and adjusted so that the following picture holds: Starting from zero do $a_1(\alpha_2, \beta_2)$; we overshot zero by ε_2 . Repeat $a_1(\alpha_2, \beta_2)$ N_2 additional times. We now have $N_2 + 1$ copies of (the range of) a_1 , each a translate by ε_2 of the preceding. Continue by doing $b_1(\alpha_2, \beta_2)$ M_2 times. We are now just short of α_2 . Continue with $b_1^*(\alpha_2, \beta_2)$, where b_1^* is b_1 from which we omit

the first step, and we are back at zero. We have just described the orbit $a_2(\alpha_2, \beta_2)$. The orbit $b_2(\alpha_2, \beta_2)$ is: a single a_1 orbit followed by $M_2 + 1$ b_1 orbits and closing with one b_1^* . In other words we replace in a_2 , N_2 orbits a_1 by a single orbit b_1 ; this is possible since $N_2\epsilon_2 = \eta_2$. For use in the following step we also define b_2^* as b_2 omitting the first a_1 , that is, $M_2 + 1$ orbits b_1 followed by one b_1^* . Define E_2 as the set covered by $a_2(\alpha_2, \beta_2)$ and $b_2(\alpha_2, \beta_2)$, both starting (and ending) at zero. We have $E_2 \subset E_1 + [-\eta_2, \alpha_1]$. If we denote by k_2 (resp. k'_2) the number of α -steps in a_2 (resp. b_2) and by l_2 (resp. l'_2) the corresponding number of β -steps, we have $k_2 = 4(N_2 + 1) + M_2$, $k'_2 = M_2 + 5$, $l_2 = 2(N_2 + 1) + 3(M_2 + 1)$, $l'_2 = 3(M_2 + 2) + 2$; and if we impose that $N_2 \geq M_2$ we obtain

$$(2) \quad \begin{vmatrix} k_2 & l_2 \\ k'_2 & l'_2 \end{vmatrix} \sim N_2 M_2 \begin{vmatrix} 4 & 2 \\ 1 & 3 \end{vmatrix} \neq 0$$

and we are set to continue by induction.

The typical step in the induction is completely analogous to the one just described. We choose $N_i \geq M_i$ and thereby ϵ_i and $\eta_i = N_i \epsilon_i \sim (M_i + 1)^{-1} \epsilon_{i-1}$. We obtain (α_i, β_i) very close to $(\alpha_{i-1}, \beta_{i-1})$ as the solution of

$$(3) \quad \begin{aligned} k_i(\alpha_i - \alpha_{i-1}) + l_i(\beta_i - \beta_{i-1}) &= \epsilon_i, \\ k'_i(\alpha_i - \alpha_{i-1}) + l'_i(\beta_i - \beta_{i-1}) &= \eta_i \end{aligned}$$

and define $a_i = (a_{i-1} : N_i + 1 \text{ times}, b_{i-1} : M_i \text{ times and one } b_{i-1}^*)$, $b_i = (a_{i-1} \text{ followed by } M_i + 1 \text{ times } b_{i-1} \text{ and one } b_{i-1}^*)$. We select η_i so that $a_i(\alpha_i, \beta_i)$ and $b_i(\alpha_i, \beta_i)$ both close at their initial point. We put $b_i^* = (b_{i-1} : M_i + 1 \text{ times and one } b_{i-1}^*)$ and E_i the set of points covered by either $a_i(\alpha_i, \beta_i)$ or $b_i(\alpha_i, \beta_i)$ both starting at zero. As in (2), we insure the solvability of (3) by choosing N_{i-1} and M_{i-1} large enough. We now write $(E, \alpha, \beta) = \lim_{j \rightarrow \infty} (E_j, \alpha_j, \beta_j)$. In order to estimate the Hausdorff h -measure we notice again that $E \subset E_i + [-2\eta_{i+1}, 2\epsilon_i]$. We denote the total number of points in E_i by P_i and remark that by taking M_{i+1} large enough, η_{i+1} becomes small enough to insure $P_i h(4\eta_{i+1}) < j^{-1}$. We cover part of E by $F_i = E_i + [-2\eta_{i+1}, 2\eta_{i+1}]$ and notice that the number of points of E_{i+1} not covered by F_i is bounded by $P_i M_{i+1}$ which is independent of N_{i+1} . We now take N_{i+1} large enough, i.e. ϵ_{i+1} small enough to insure $P_i M_{i+1} h(4\epsilon_{i+1}) < j^{-1}$ and the theorem follows from $E \subset F_i \cup [(E_{i+1} \setminus F_i) + [-2\epsilon_{i+1}, 2\epsilon_{i+1}]]$.

REFERENCE

1. R. Engelking, *Sur un problème de K. Urbanik*, Colloq. Math. 8 (1961), 243–250.