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ON a/3-SETS 

BY 

Y. KATZNELSON 

ABSTRACT 

A closed set E C T is an aft-set, where a and/3 are elements of infinite order in 
T, if E C (E - a) O (E -/3). We give two constructions of "thin" aft-sets. 

Let  a and /3 be  e lements  of infinite o rder  of the circle g roup  T = R/Z.  A 

closed E C T is an a/3-set  if E C (E  - a )  U (E  - / 3 ) ,  or  equivalent ly  if, wheneve r  

x ~ E, then ei ther  x + a E E or x +/3  E E (or both) .  An a/3-orbi t  is a sequence  

{x.} such that  x , + ~ - x ,  is e i ther  a or  /3. Engelk ing  [1] raises the quest ion of 

exis tence of non-dense  a/3-sets.  The  purpose  of this note  is to give a posit ive 

answer  to that  quest ion.  

w 

THEOREM 1. Assume that a and/3 are rationally independent (mod 1) and 

that {yn}7=~ C T is arbitrary. There exists a closed a/3-set E disjoint from {y,}. 

REMARKS. (1) If {Y,} is dense in T, the set E given by the t h e o r e m  is clearly 

non-dense .  

(2) The  assumpt ion  that  a and /3  are rat ionally independen t  is essential.  If  a 

and /3 are dependen t ,  there  exists some  3' E T and integers n~, n2 such that  

a = n13', /3 = n23', and any aft-orbit is a subset  of b o u n d e d  gaps  of a 3'-orbit.  

Since any 3,-orbit is dense in T we see that  if E is any n o n - e m p t y  af t -se t ,  
M 

U j = o E  + J 7  = T where  M = maxj~l.2[ nj[ and E has n o n - e m p t y  interior.  

For  e > 0  write N ( e ) = i n f ( n + m )  such that  n>=O, m >-0, n + m  > 0  and 

I na + m/3(mod i)[ < e. N ( e )  is clearly b o u n d e d  by 1/e and depends  on the 

D iophan t ine  proper t ies  of the pair  a, /3.  The  assumpt ions  we m a d e  on a , /3  imply 

lim, ~o N ( e ) = oo. 
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k 
LEMMA 1. Let E be an c~ft-set, E C I..J j=t Ij where Ij are intervals of lengths 

Iljl. Then Z~ '= , (N( I / j ] ) ) - ' =  > 1. 

PROOF. An a f t -o rb i t  can spend no more  than ( N ( I I  j I)) -1 of its t ime in Ij. 

COROLLARY. I f  N ( e )  > ce -" (0 < r/ < 1), then the Hausdorff dimension of 

every aft-set is at least 71. 

We shall use the following variant  of L e m m a  I: 

LEMMA 2. Assume that {/~}~'=l are open intervals on T such that 

Z~=t N([ li I)- '  < 1/10. There exists an integer K such that if {xt}~o is an aft-orbit 

and x, E L_J lj for �89 M values of l, then M < K. 

PROOF. Long orbits  can spend no more  the 1/10 of their  t ime in I,.Jlj, 

PROOF OF THEOREM 1. We  construct  E by removing  f rom T, successively, 

finite unions of open intervals and taking the intersect ion of wha tever  is left. The  

first stage consists of removing  f rom T an open interval  L, containing y~, such 

that N(]L] )  -t < 1/10, where  IIi] is also small enough to insure that El  = T\ I~  is 

an af t - se t .  We also require  that  no end point  of  It (as well as those of any 

interval which we r emove  later) belongs to the same  a f t -o rb i t  as any of the 

points  {yj}. 

Af te r  n steps we obtain a set E ,  = T / I . J ~ t  Ij which is an af t - se t  and such that  

k n 

(1) ~ N ( I I  i l ) - ' <  1/10 
j = l  

and {Yi}7=t C I t. Let  y '  be the first yj not covered  by [..Jlj. It is clear that  if we 

r emove  y '  f rom E ,  and we are to obtain an af t -se t ,  we have to r e m o v e  at the 

same t ime all the points  x E E ,  such that any a f t -o rb i t  start ing at x and 

remaining in E ,  must  pass through y' .  Such points  x clearly have the form 

y '=  ka - lft, k _>- O, l_-> O, k + l > 0 ,  and we claim that  there are only a finite 

n u m b e r  of those,  in fact, that  k + l < K where  K is the integer  given by L e m m a  

2 for {Ij}~=~. Let  x = y ' -  ka - lft be such a point  and assume that  I _-> k ; any 

a f t -o rb i t  f rom x which remains  in E ,  must  have k a - s t ep s  and l f t -s teps in its 

first k + l steps. He re  we use the independence  of a and/3 and the fact that  such 

an orbit  must pass through y ' .  Of  the usually several  such orbits  f rom x to y '  

there  is one  that  favors  a in the sense that  whenever  there  is an opt ion to s tep a 

or/3, a is done.  D e n o t e  this orbi t  by {~j}~=~ (~0 = x, ,~:k.t = y ' ) ;  there  are l values 

of j for  which the f t -s tep  was forced,  i.e., ~:j + a ~  E.. If we look at the orbit  
k 

{~:j + a}~=~ we see that  l of its k + l m e m b e r s  are in I..J~"/j and since l _-> �89 + l) 
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we can apply Lemma 2 and obtain k + l _<- K. If l < k interchange the roles of a 

and /3 and again k + l -  < K. Notice that the bound K depends only on the 

structure of E ,  and not on the point y'. If we denote by R (y') the set of points 

which have to be removed with y', we see that this set is contained in the interior 

of E ,  (by the assumption made on the boundary points) and clearly depends 

continuously on y '  in the sense that for all sufficiently small 6 we have 

r(y' + 6) = R (y') + 8. Thus, if we remove a 6 neighborhood of R (y'), that is the 

union of intervals of length 26 centered at each x E R (y'), the remaining set 

E.+, will again be an a/3-set. We impose on 6 also to be small enough so that (1) 

be valid for n + 1, and finally that the new boundary points not share a/3-orbits 

with any yj. 

w The construction described above clearly gives sets of positive measure. 

It seems probable that for any independent pair a, /3 there exist a/3-sets of 

measure zero. On the other hand, the corollary to Lemma 1 shows that in 

general a/3-sets have positive Hausdorff dimension. Our next construction 

shows that for some pairs a, /3 there exist extremely thin a/3-sets. 

THEOREM 2. Given any Hausdorff function h, there exist pairs ~, /3 and 

c~/3-sets E such that Hausdorff h-measure of E is zero. 

PROOF. We construct a,/3 and E simultaneously by successive approxima- 

tion of ~ and/3 by rationals and E by finite sets. The thinner we want E the 

more "Liouville" will a and/3 have to be. We start by putting c~i = 0.1,/31 = 0.3 

and E = {0, ~1, 2a.,, 3al, 4al = C~l +/3~, 7C~l = al + 2/31}. We have two closed or- 

bits in E 1 starting at zero, namely, 

aa: four a,-steps followed by two /3~-steps, 

b~: one ai-step followed by three /3rsteps. 

We use the notation al, bl (and similarly a,, b, etc. later) as lists of steps to take. 

Thus, for any a*, [3", a~(a*,/3") will mean: " take four a*-steps and then two 

/3 *-steps". 

Let N2 and M2 be (large) positive integers. For every e2, r/2 we can solve the 

equations 4x +2y  = 1+ e2, x + 3y = 1+ r/2. If e2 and T/2 are both small, the 

solution (a2,/32) will be close to (al,/31). We take e2 >0 ,  r12>0 such that 

~2 = N2e2, r/2 is roughly (M2+ 1)-la~ and adjusted so that the following picture 

holds: Starting from zero do al(a2,/32); we overshot zero by e2. Repeat  al(a2, [32) 
N2 additional times. We now have N~+ 1 copies of (the range of) a,, each a 

translate by e2 of the preceding. Continue by doing bl(a2, [32) M2 times. We are 

now just short of a2. Continue with b~(az,/32), where b* is bl from which we omit 
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thefirst step, and we are back at zero. We have just described the orbit a2(a2,/32). 

The orbit b2(o~2,/32) is: a single al orbit followed by M2+ 1 bl orbits and closing 

with one b~'. In other words we replace in a2, N2 orbits al by a single orbit bl; 

this is possible since N2e2 = ,12. For use in the following step we also define b ~ as 

b2 omitting the first al, that is, M2 + 1 orbits b~ followed by one b'~. Define E2 as 

the set covered by a2(a2,/32) and bz(az, f12), both starting (and ending) at zero. 

We have E2CE~+[- r /2 ,  a~]. If we denote by k2 (resp. k~) the number of 

a-steps in a2 (resp. b2) and by 12 (resp. l~) the corresponding number of/3-steps, 

we have k2=4(N2+l )+M2,  k ~ = M 2 + 5 ,  12=2(N2+l)+3(M2+l) ,  l~= 
3(/9/2 + 2)+ 2; and if we impose that N2 >> M2 we obtain 

k2 12 2 4 
1 31 ~ 0  

and we are set to continue by induction. 

The typical step in the induction is completely analogous to the one just 

described. We choose Nj -> Mj and thereby ej and ~/, = Nje~ - (Mr + 1)-'ej_,. We 

obtain (at,/3j) very close to (a~_~,/3j-1) as the solution of 

k, (a ,  - a , - l )  + t, (/3, - / 3 , _  1) = e,, 
(3) 

k ;(a, - a,_,) + 1;(/3, -/3,-,) = rlj 

and define a j = ( a j _ l : N ~ + l  times, bj_l:Mj times and one b*j_~), bj=(aj_~ 
followed by Mj + 1 times bj_~ and one b*_~). We select r/j so that aj(aj,/3j) and 
b~ (aj,/3j) both close at their initial point. We put b * = (bj_~ : Mj + 1 times and one 

b,*_l) and Ej the set of points covered by either aj(ai,/3~) or bj(aj,/3j) both 

starting at zero. As in (2), we insure the solvability of (3) by choosing N~_~ and 

Mi_, large enough. We now write (E,a,/3)=limj~=(E~,aj,/3j). In order to 

estimate the Hausdorff h-measure we notice again that E C Ej + [ -  2r/j.~, 2ej]. 

We denote the total number of points in E~ by P~ and remark that by taking Mj§ 

large enough, r/~+~ becomes small enough to insure Pjh (4~/~.~)< j-~. We cover 

part of E by F~ = E~ + [ -  2r/j§ 2r/i.~] and notice that the number of points of 

E~§ not covered by F~ is bounded by P~M~§ which is independent of Ni§ We 

now take/V~+~ large enough, i.e. ei+~ small enough to insure P~M~.~h (4e~+~) < j - '  

and the  theorem follows from E C E U [(Ej+I\F~)+ [-2e~+~,2e~§ 

REFERENCE 

1. R. Engelking, Sur un probl~me de K. Urbanik, Colloq. Math. 8 (1961), 243-250. 

THE HEBREW UNIVERSITY OF JERUSALEM 
JERUSALEM, ISRAEL 


