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ON aB-SETS

BY
Y. KATZNELSON

ABSTRACT

A closed set E C T is an af3-set, where « and B are elements of infinite order in
T, if EC(E—-a)U(E — B). We give two constructions of “thin” «f-sets.

Let @ and B be elements of infinite order of the circle group T=R/Z. A
closed E CTisan af-setif E C (E — a) U (E — B), or equivalently if, whenever
x € E, then either x + « € E or x + B € E (or both). An af-orbit is a sequence
{x.} such that x..,— x. is either a or B. Engelking [1] raises the question of
existence of non-dense afB-sets. The purpose of this note is to give a positive
answer to that question.

§1

THEOREM 1. Assume that a and B are rationally independent (mod 1) and
that {y.}n-.CT is arbitrary. There exists a closed ap-set E disjoint from {y.}.

Remarks. (1) If {Y.} is dense in T, the set E given by the theorem is clearly
non-dense.

(2) The assumption that @ and 8 are rationally independent is essential. If «
and B are dependent, there exists some y €T and integers n,, n, such that
a = nyy, B = nyy, and any af-orbit is a subset of bounded gaps of a y-orbit.
Since any y-orbit is dense in T we see that if E is any non-empty of-set,
U E + jy =T where M = max;...|n;| and E has non-empty interior.

For ¢ >0 write N(e)=inf(n +m) such that n=0, m =0, n+m >0 and
[na + mB(mod 1)| < e. N(g) is clearly bounded by 1/¢ and depends on the
Diophantine properties of the pair a, 8. The assumptions we made on «, 8 imply
lim, o N(g) = co.
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Lemma 1. Let E be an af-set, E C U,';, I, where I, are intervals of lengths
L] Then S (N(I51)" 2 1.

PrROOF. An af-orbit can spend no more than (N(|L )™ of its time in I,

CoroLLARY. If N(g)>ce™ (0<mn <1), then the Hausdorff dimension of
every af3-set is at least 7.

We shall use the following variant of Lemma 1:

Lemma 2. Assume that {L}., are open intervals on T such that
KA N(| L)' < 1/10. There exists an integer K such that if {x.}}1s is an af-orbit
and x, € UL for M values of I, then M < K.

Proor. Long orbits can spend no more the 1/10 of their time in UL,

Proor oF THEOREM 1. We construct E by removing from T, successively,
finite unions of open intervals and taking the intersection of whatever is left. The
first stage consists of removing from T an open interval I,, containing y,, such
that N(|I,])™"' < 1/10, where | I,| is also small enough to insure that E, = T\I, is
an af3-set. We also require that no end point of I, (as well as those of any
interval which we remove later) belongs to the same afB-orbit as any of the
points {y,}.

After n steps we obtain aset E, = T\ U,’-‘;1 I; which is an af3-set and such that

) > N(I5])* <1710

and {y;}/-, C I,. Let y’ be the first y; not covered by UI,. It is clear that if we
remove y' from E, and we are to obtain an af3-set, we have to remove at the
same time all the points x € E, such that any aB-orbit starting at x and
remaining in E, must pass through y’. Such points x clearly have the form
y'=ka-1I8, kz0,1=20, k+1>0, and we claim that there are only a finite
number of those, in fact, that k + [ < K where K is the integer given by Lemma
2 for {L}f2.. Let x =y'— ka — IB be such a point and assume that [ = k; any
aB-orbit from x which remains in E, must have k a-steps and / B-steps in its
first k + [ steps. Here we use the independence of @ and 8 and the fact that such
an orbit must pass through y’. Of the usually several such orbits from x to y’
there is one that favors « in the sense that whenever there is an option to step a
or B, « is done. Denote this orbit by {£}/20 (é0 = x, &+ = y'); there are [ values
of j for which the B-step was forced, i.e., & + aZ E.. If we look at the orbit
{¢& + a}i2i we see that [ of its k + | members are in U;"I, and since [ = itk +1)
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we can apply Lemma 2 and obtain k + | = K. If I <k interchange the roles of a
and B and again k +! = K. Notice that the bound K depends only on the
structure of E, and not on the point y'. If we denote by R(y’) the set of points
which have to be removed with y’, we see that this set is contained in the interior
of E, (by the assumption made on the boundary points) and clearly depends
continuously on y’ in the sense that for all sufficiently small § we have
r(y’'+ 8)= R(y")+ 8. Thus, if we remove a 6 neighborhood of R(y’), that is the
union of intervals of length 28 centered at each x € R(y’), the remaining set
E.., will again be an af3-set. We impose on § also to be small enough so that (1)
be valid for n + 1, and finally that the new boundary points not share af3-orbits
with any y;.

§2. The construction described above clearly gives sets of positive measure,
It seems probable that for any independent pair «, 8 there exist af3-sets of
measure zero. On the other hand, the corollary to Lemma 1 shows that in
general aB-sets have positive Hausdorff dimension. Our next construction
shows that for some pairs «, B there exist extremely thin af8-sets.

THEOREM 2. Given any Hausdorff function h, there exist pairs a, B and
af-sets E such that Hausdorff h-measure of E is zero.

Proor. We construct o, 8 and E simultaneously by successive approxima-
tion of a and B by rationals and E by finite sets. The thinner we want E the
more “‘Liouville” will &« and B8 have to be. We start by putting a; = 0.1, 8, =0.3
and E = {0, a,,2a;,3a, 40, = a1+ B, T, = a; + 23:}. We have two closed or-
bits in E, starting at zero, namely,

a;: four a,-steps followed by two B;-steps,

b;: one a;-step followed by three B;-steps.

We use the notation a, b, (and similarly a,, b. etc. later) as lists of steps to take.
Thus, for any a*, B*, a;(a™, B*) will mean: “take four a *-steps and then two
B *-steps”.

Let N, and M, be (large) positive integers. For every g,, 11> we can solve the
equations 4x +2y =1+ ¢, x +3y = 1+ 7. If &, and 7, are both small, the
solution (a,, B;) will be close to (ai, ). We take &£,>0, n,>0 such that
N2= Nag,, M, is roughly (M, + 1)"'a, and adjusted so that the following picture
holds: Starting from zero do a.(a», B.); we overshot zero by ¢,. Repeat a(as, B2)
N, additional times. We now have N.+ 1 copies of (the range of) a,, each a
translate by ¢, of the preceding. Continue by doing b.(a,, B2) M, times. We are
now just short of a,. Continue with bi(a;, 8.), where b1 is b, from which we omit
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the first step, and we are back at zero. We have just described the orbit ax(a», B2).
The orbit bx(a», B,) is: a single a; orbit followed by M,+ 1 b, orbits and closing
with one b¥. In other words we replace in a,, N orbits a, by a single orbit b;
this is possible since N.£; = 7.. For use in the following step we also define b3 as
b, omitting the first a,, that is, M, + 1 orbits b, followed by one b}. Define E, as
the set covered by a.(a,, B.) and b.(a:, B:), both starting (and ending) at zero.
We have E;CE,+[— 1, a:]. If we denote by k, (resp. k5) the number of
a-steps in a; (resp. b,) and by I, (resp. 13) the corresponding number of B-steps,
we have k,=4(N,+ 1)+ M,, ki=M;+5, L=2(N,+1)+3(M,+1), l;=
3(M,+2)+2; and if we impose that N,> M, we obtain

4 2
® ke b :

ki b 1
and we are set to continue by induction.
The typical step in the induction is completely analogous to the one just
described. We choose N; > M; and thereby ¢; and ; = Nig; ~ (M; + 1) '¢;-,. We
obtain (a; B;) very close to (a;_,, B;-1) as the solution of

kiley; — ;- )+ 5(B; — Bi-1) = &,
kil — ;) + 1i(By — Bi-) = m;

and define a; =(a;-:: N; +1 times, b;,_,: M; times and one b%_,), b, = (a;-,
followed by M; + 1 times b;_, and one b*_,). We select ; so that g;(e;, B;) and
b; (o, B;) both close at their initial point. We put b% = (b;-; : M; + 1 times and one
b%_.) and E; the set of points covered by either a;(a; B;) or b;(a, B;) both
starting at zero. As in (2), we insure the solvability of (3) by choosing N;_, and
M;_, large enough. We now write (E, a, 8)=lim;_..(E;, o, B;). In order to
estimate the Hausdorff h-measure we notice again that E C E; + [ —27;.1, 2¢].
We denote the total number of points in E; by P; and remark that by taking M.,
large enough, 7;., becomes small enough to insure Ph(47;.,) <j'. We cover
part of E by F, = E; +[ — 27,.1,27m;.1] and notice that the number of points of
E;., not covered by F; is bounded by PM;., which is independent of N,.,. We
now take N;., large enough, i.e. g, small enough to insure PM;, h(d¢;:) <j"
and the theorem follows from E CF, U[(E.\F)+ [ — 2¢j+1,2¢+1]].
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